Birzeit University
Faculty of Science-Department of Physics
Quantum Mechanics II, Phys4332
Spring 2021
Homework 1: Due date Apr. 18th 2022

1. Find the energy levels of a spin $S=3 / 2$ particle whose Hamiltonian is given by:

$$
\hat{H}=\frac{\alpha}{\hbar^{2}}\left(\hat{S_{x}^{2}}+\hat{S_{y}^{2}}-2 \hat{S_{z}^{2}}\right)-\frac{\beta}{\hbar} \hat{S}_{z}
$$

α and β are constants. Are these level degenerate.
2. Particle 1 which is spin $\frac{1}{2}$, and particle 2 which is spin 2 are combined into a single particle with a total spin $\vec{S}=\overrightarrow{S_{1}}+\overrightarrow{S_{2}}$
(a) If the system is at state $\left|S m_{S}\right\rangle=\left|\frac{5}{2} \frac{3}{2}\right\rangle$, write it in terms of $\left|S_{1} S_{2} ; m_{1} m_{2}\right\rangle$
(b) If $S_{1 z}$ and $S_{2 z}$ were measured and found to be $\frac{\hbar}{2}$ and \hbar respectively. What values might we get if we measure S^{2}, and with what probability.
3. Consider a spin- $1 / 2$ particle which we shall describe in the basis of eigenstates for S_{z}. The basis for S_{z} are:

$$
\left|+>_{z}=\binom{1}{0}\right|->_{z}=\binom{0}{1}
$$

(a) What are the eigenvalues and eigenvectors of S_{y}. Write the eigenvectors of S_{y} (i.e $\left|+>_{y},\right|->_{y}$) in terms of those of S_{z}
(b) If the particle is initially in the following state:

$$
\chi=\frac{1}{\sqrt{13}}\left[3\left|+>_{y}+2\right|->_{y}\right]
$$

What is the probability of getting $\frac{ \pm \hbar}{2}$ if we measure S_{z}, and what is the expectation value of S_{z}
(c) What is the probability of getting $\frac{+\hbar}{2}$ if we measure S_{y}
4. Consider a spin-1/2 particle described by the Hamiltonian:

$$
\begin{equation*}
H=\omega_{1} S_{x}+\omega_{2} S_{z} \tag{1}
\end{equation*}
$$

where $\omega_{1}=3, \omega_{2}=4$
(a) What is the matrix representation of H in the basis where S_{z} is diagonal.
(b) Find the eigenvalues and eigenvectors of H
(c) Suppose at $\mathrm{t}=0$, the particle was in a state in which $\mathrm{S}_{z}=+\hbar / 2$, what is the probability of getting $S_{z}=-\hbar / 2$ at a later time t .
5. Consider a spin- $1 / 2$ particle with magnetic moment $\mu=\gamma S$ in a uniform magnetic field that points in the z -direction. If at time $\mathrm{t}=0$ the x -component of the spin as measured and were found to be $\frac{+\hbar}{2}$. At time t , y-component of the spin was measured and were found to be $\frac{+\hbar}{2}$, what is t ?
6. Particle 1 which has a spin $\frac{1}{2}$, and particle 2 which has spin 2 , are combined to form a particle with spin $\vec{S}=\vec{S}_{1}+\vec{S}_{2}$. The combined particle is in state $\left|\frac{5}{2} \frac{3}{2}\right\rangle$. Write it in terms of $\left|S_{1} S_{2} m_{1} m_{2}\right\rangle$. Don't use the table.

