1. Find the energy levels of a spin S = 3/2 particle whose Hamiltonian is given by:

$$\hat{H} = \frac{\alpha}{\hbar^2} (\hat{S}_x^2 + \hat{S}_y^2 - 2\hat{S}_z^2) - \frac{\beta}{\hbar} \hat{S}_z$$

 α and β are constants. Are these level degenerate.

- 2. Particle 1 which is spin $\frac{1}{2}$, and particle 2 which is spin 2 are combined into a single particle with a total spin $\vec{S} = \vec{S_1} + \vec{S_2}$
 - (a) If the system is at state $|Sm_S\rangle = |\frac{5}{2}\frac{3}{2}\rangle$, write it in terms of $|S_1S_2; m_1m_2\rangle$
 - (b) If S_{1z} and S_{2z} were measured and found to be $\frac{\hbar}{2}$ and \hbar respectively. What values might we get if we measure S^2 , and with what probability.
- 3. Consider a spin-1/2 particle which we shall describe in the basis of eigenstates for S_z . The basis for S_z are:

$$|+>_{z}=\left(\begin{array}{c}1\\0\end{array}\right)|->_{z}=\left(\begin{array}{c}0\\1\end{array}\right)$$

- (a) What are the eigenvalues and eigenvectors of S_y . Write the eigenvectors of S_y (i.e $|+\rangle_y$, $|-\rangle_y$) in terms of those of S_z
- (b) If the particle is initially in the following state:

$$\chi = \frac{1}{\sqrt{13}}[3|+>_y+2|->_y]$$

What is the probability of getting $\frac{\pm \hbar}{2}$ if we measure S_z , and what is the expectation value of S_z

- (c) What is the probability of getting $\frac{+\hbar}{2}$ if we measure S_y
- 4. Consider a spin-1/2 particle described by the Hamiltonian:

$$H = \omega_1 S_x + \omega_2 S_z \tag{1}$$

where $\omega_1 = 3, \omega_2 = 4$

- (a) What is the matrix representation of H in the basis where S_z is diagonal.
- (b) Find the eigenvalues and eigenvectors of H
- (c) Suppose at t=0, the particle was in a state in which $S_z = +\hbar/2$, what is the probability of getting $S_z = -\hbar/2$ at a later time t.
- 5. Consider a spin-1/2 particle with magnetic moment $\mu = \gamma S$ in a uniform magnetic field that points in the z-direction. If at time t=0 the x-component of the spin as measured and were found to be $\frac{+\hbar}{2}$. At time t, y-component of the spin was measured and were found to be $\frac{+\hbar}{2}$, what is t?
- 6. Particle 1 which has a spin $\frac{1}{2}$, and particle 2 which has spin 2, are combined to form a particle with spin $\vec{S} = \vec{S_1} + \vec{S_2}$. The combined particle is in state $|\frac{5}{2}\frac{3}{2}>$. Write it in terms of $|S_1S_2m_1m_2>$. Don't use the table.